一、拉格朗日酒莊
[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得
顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
二、拉格朗日紅酒
拉格朗日法是描述流體運(yùn)動(dòng)的兩種方法之一,又稱隨體法,跟蹤法。
是研究流體各個(gè)質(zhì)點(diǎn)的運(yùn)動(dòng)參數(shù)(位置坐標(biāo)、速度、加速度等)隨時(shí)間的變化規(guī)律。綜合所有流體質(zhì)點(diǎn)運(yùn)動(dòng)參數(shù)的變化,便得到了整個(gè)流體的運(yùn)動(dòng)規(guī)律。
在研究波動(dòng)問題時(shí),常用拉格朗日法
三、拉格朗日百度百科
羅爾中值定理能推出拉格朗日中值定理和柯西中值定理,反過來拉格朗日中值定理和柯西中值定理也可以推出羅爾中值定理。
泰勒中值定理是由柯西中值定理推出來的。泰勒中值定理在一階導(dǎo)數(shù)情形就是拉格朗日中值定理。
羅比達(dá)法則是柯西中值定理在求極限時(shí)應(yīng)用。
四、拉格朗曰
拉格朗日出生在意大利的都靈。由于是長子,父親一心想讓他學(xué)習(xí)法律,然而,拉格朗日對(duì)法律毫無興趣,偏偏喜愛上文學(xué)。
直到16歲時(shí),拉格朗日仍十分偏愛文學(xué),對(duì)數(shù)學(xué)尚未產(chǎn)生興趣。16歲那年,他偶然讀到一篇介紹牛頓微積分的文章《論分析方法的優(yōu)點(diǎn)》,使他對(duì)牛頓產(chǎn)生了無限崇拜和敬仰之情,于是,他下決心要成為牛頓式的數(shù)學(xué)家。
在進(jìn)入都靈皇家炮兵學(xué)院學(xué)習(xí)后,拉格朗日開始有計(jì)劃地自學(xué)數(shù)學(xué)。由于勤奮刻苦,他的進(jìn)步很快,尚未畢業(yè)就擔(dān)任了該校的數(shù)學(xué)教學(xué)工作。20歲時(shí)就被正式聘任為該校的數(shù)學(xué)副教授。從這一年起,拉格朗日開始研究“極大和極小”的問題。他采用的是純分析的方法。1758年8月,他把自己的研究方法寫信告訴了歐拉,歐拉對(duì)此給予了極高的評(píng)價(jià)。從此,兩位大師開始頻繁通信,就在這一來一往中,誕生了數(shù)學(xué)的一個(gè)新的分支——變分法。
1759年,在歐拉的推薦下,拉格朗日被提名為柏林科學(xué)院的通訊院士。接著,他又當(dāng)選為該院的外國院士。
1762年,法國科學(xué)院懸賞征解有關(guān)月球何以自轉(zhuǎn),以及自轉(zhuǎn)時(shí)總是以同一面對(duì)著地球的難題。拉格朗日寫出一篇出色的論文,成功地解決了這一問題,并獲得了科學(xué)院的大獎(jiǎng)。拉格朗日的名字因此傳遍了整個(gè)歐洲,引起世人的矚目。兩年之后,法國科學(xué)院又提出了木星的4個(gè)衛(wèi)星和太陽之間的攝動(dòng)問題的所謂“六體問題”。面對(duì)這一難題,拉格朗日毫不畏懼,經(jīng)過數(shù)個(gè)不眠之夜,他終于用近似解法找到了答案,從而再度獲獎(jiǎng)。這次獲獎(jiǎng),使他贏得了世界性的聲譽(yù)。
1766年,拉格朗日接替歐拉擔(dān)任柏林科學(xué)院物理數(shù)學(xué)所所長。在擔(dān)任所長的20年中,拉格朗日發(fā)表了許多論文,并多次獲得法國科學(xué)院的大獎(jiǎng):1722年,其論文《論三體問題》獲獎(jiǎng);1773年,其論文《論月球的長期方程》再次獲獎(jiǎng);1779年,拉格朗日又因論文《由行星活動(dòng)的試驗(yàn)來研究彗星的攝動(dòng)理論》而獲得雙倍獎(jiǎng)金。
在柏林科學(xué)院工作期間,拉格朗日對(duì)代數(shù)、數(shù)論、微分方程、變分法和力學(xué)等方面進(jìn)行了廣泛而深入的研究。他最有價(jià)值的貢獻(xiàn)之一是在方程論方面。他的“用代數(shù)運(yùn)算解一般n次方程(n4)是不能的”結(jié)論,可以說是伽羅華建立群論的基礎(chǔ)。
五、拉格朗日是干嘛的
由開爾文定理可直接推論得到拉格朗日定理(Lagrange theorem),即漩渦不生不滅定理:
正壓理想流體在質(zhì)量力有勢(shì)的情況下,如果初始時(shí)刻某部分流體內(nèi)無渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為無渦。反之,若初始時(shí)刻該部分流體有渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為有渦。
六、拉格朗日θx
在這里xyz都是自變量,
V=xyz就是一個(gè)多元函數(shù),并不是方程,
x,y,z的變化都會(huì)使V發(fā)生變化
沒錯(cuò),xyz滿足了條件
φ(x,y,z)=2xy+2yz+2xz-a^2=0
你當(dāng)然可以把其中一個(gè)用另外兩個(gè)來表示,
再帶回到V=xyz中,
然后只求偏導(dǎo)兩次就可以了
七、拉格郎日點(diǎn)
從天體物理學(xué)的角度看,拉格朗日點(diǎn)被發(fā)現(xiàn)后,天文學(xué)家認(rèn)為在一個(gè)恒星系統(tǒng)中的5個(gè)拉格朗日點(diǎn)上,應(yīng)該存在大量的天體。按照這個(gè)思路,天文學(xué)家已經(jīng)在太陽系的多個(gè)行星系統(tǒng)中發(fā)現(xiàn)了大量此前未被發(fā)現(xiàn)或者觀測(cè)到的小行星。比如,在木星的L4和L5兩個(gè)拉格朗日點(diǎn)上,就發(fā)現(xiàn)了大量的特洛伊小行星,數(shù)量超過2000個(gè)。
從航空航天的角度看,拉格朗日點(diǎn)發(fā)現(xiàn),極大地推動(dòng)了現(xiàn)代航天科學(xué)的進(jìn)步。由于位于拉格朗日點(diǎn)的航天器只需要很少的燃料就可以維持軌道穩(wěn)定,因此,這5個(gè)拉格朗日點(diǎn)成為航天器的首選目的地,并且,5個(gè)拉格朗日點(diǎn)的不同位置,對(duì)于不同的航天器來說,也具有不同的優(yōu)勢(shì)。