一、lagrange中值定理證明?
拉格朗日中值定理是微積分中的重要定理之一,大多數(shù)是利用羅爾中值定理構(gòu)建輔助函數(shù)來證明的。 擴(kuò)展資料
拉格朗日中值定理又稱拉氏定理,是微分學(xué)中的基本定理之一,它反映了可導(dǎo)函數(shù)在閉區(qū)間上的整體的平均變化率與區(qū)間內(nèi)某點(diǎn)的.局部變化率的關(guān)系。拉格朗日中值定理是羅爾中值定理的推廣,同時(shí)也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一階展開)。
法國(guó)數(shù)學(xué)家拉格朗日于1797年在其著作《解析函數(shù)論》的第六章提出了該定理,并進(jìn)行了初步證明,因此人們將該定理命名為拉格朗日中值定理。
二、積分中值定理證明_?
積分中值定理的證明方法:由估值定理可得同除以(b-a)從而命題得證。 積分中值定理分為”積分第一中值定理“和”積分第二中值定理“,它們各包含兩個(gè)公式。其中,積分第二中值定理還包含三個(gè)常用的推論。積分中值定理揭示了一種將積分化為函數(shù)值, 或者是將復(fù)雜函數(shù)的積分化為簡(jiǎn)單函數(shù)的積分的方法, 是數(shù)學(xué)分析的基本定理和重要手段, 在求極限、判定某些性質(zhì)點(diǎn)、估計(jì)積分值等方面應(yīng)用廣泛。
三、拉格朗日定理來證明什么?
拉格朗日中值定理是微積分中的重要定理之一,大多數(shù)是利用羅爾中值定理構(gòu)建輔助函數(shù)來證明的。
擴(kuò)展資料
拉格朗日中值定理又稱拉氏定理,是微分學(xué)中的基本定理之一,它反映了可導(dǎo)函數(shù)在閉區(qū)間上的.整體的平均變化率與區(qū)間內(nèi)某點(diǎn)的局部變化率的關(guān)系。拉格朗日中值定理是羅爾中值定理的推廣,同時(shí)也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一階展開)。
法國(guó)數(shù)學(xué)家拉格朗日于1797年在其著作《解析函數(shù)論》的第六章提出了該定理,并進(jìn)行了初步證明,因此人們將該定理命名為拉格朗日中值定理。
四、歐拉中值定理?
拉格朗日中值定理又稱拉氏定理,是微分學(xué)中的基本定理之一,它反映了可導(dǎo)函數(shù)在閉區(qū)間上的整體的平均變化率與區(qū)間內(nèi)某點(diǎn)的局部變化率的關(guān)系。拉格朗日中值定理是羅爾中值定理的推廣,同時(shí)也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一階展開)。
五、中值定理費(fèi)馬定理證明過程?
費(fèi)馬大定理的證明方法:x+y=z有無窮多組整數(shù)解,稱為一個(gè)三元組;x^2+y^2=z^2也有無窮多組整數(shù)解,這個(gè)結(jié)論在畢達(dá)哥拉斯時(shí)代就被他的學(xué)生證明,稱為畢達(dá)哥拉斯三元組,我們中國(guó)人稱他們?yōu)楣垂蓴?shù)。但x^3+y^3=z^3卻始終沒找到整數(shù)解。
最接近的是:6^3+8^3=9^-1,還是差了1。于是迄今為止最偉大的業(yè)余數(shù)學(xué)家費(fèi)馬提出了猜想:總的來說,不可能將一個(gè)高于2次的冪寫成兩個(gè)同樣次冪的和。因此,就有了:
已知:a^2+b^2=c^2
令c=b+k,k=1.2.3……,則a^2+b^2=(b+k)^2。
因?yàn)?,整?shù)c必然要比a與b都要大,而且至少要大于1,所以k=1.2.3……
設(shè):a=d^(n/2),b=h^(n/2),c=p^(n/2);
則a^2+b^2=c^2就可以寫成d^n+h^n=p^n,n=1.2.3……
當(dāng)n=1時(shí),d+h=p,d、h與p可以是任意整數(shù)。
當(dāng)n=2時(shí),a=d,b=h,c=p,則d^2+h^2=p^2 => a^2+b^2=c^2。
當(dāng)n≥3時(shí),a^2=d^n,b^2=h^n,c^2=p^n。
因?yàn)?,a=d^(n/2),b=h^(n/2),c=p^(n/2);要想保證d、h、p為整數(shù),就必須保證a、b、c必須都是完全平方數(shù)。
a、b、c必須是整數(shù)的平方,才能使d、h、p在d^n+h^n=p^n公式中為整數(shù)。
假若d、h、p不能在公式中同時(shí)以整數(shù)的形式存在的話,則費(fèi)馬大定理成立。
六、柯西中值定理怎么證明?
如果函數(shù)f(x)及F(x)滿足:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開區(qū)間(a,b)內(nèi)可導(dǎo);
(3)對(duì)任一x∈(a,b),F(xiàn)'(x)≠0,
那么在(a,b)內(nèi)至少有一點(diǎn)ζ,使等式
[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。
柯西簡(jiǎn)潔而嚴(yán)格地證明了微積分學(xué)基本定理即牛頓-萊布尼茨公式。他利用定積分嚴(yán)格證明了帶余項(xiàng)的泰勒公式,還用微分與積分中值定理表示曲邊梯形的面積,推導(dǎo)了平面曲線之間圖形的面積、曲面面積和立體體積的公式。
七、拉格朗日中值定理的證明?
證明如下:如果函數(shù)f(x)在(a,b)上可導(dǎo),[a,b]上連續(xù),則必有一ξ∈[a,b]使得f'(ξ)*(b-a)=f(b)-f(a)示意圖令f(x)為y,所以該公式可寫成△y=f'(x+θ△x)*△x (0
八、拉格朗日中值定理證明步驟?
首先,由于點(diǎn)( a,f(a) )和點(diǎn)( b,f(b) )的連線方程是這樣的 y=[ (f(b)-f(a))/(b-a) ](x-a)+f(a)
所以構(gòu)造函數(shù)成兩曲線距離d與x之間的關(guān)系即可:H(x)=f(x)-y (曲線減去直線)
由于兩條線的起點(diǎn)與終點(diǎn)均重合,所以必然符合羅爾定理的條件H(a)=H(b),然后馬上可以用羅爾定理證得.
思路:
1、拉格朗日中值定理其實(shí)就是羅爾定理的推廣(或者說一般情況),而柯西中值定理就是拉格朗日中值定理的推廣(或者說特殊情況).
2、羅爾定理的條件f(a)=f(b)就意味著是點(diǎn)( a,f(a) )和點(diǎn)( b,f(b) )的連線平行于坐標(biāo)軸的情況,然后求函數(shù)f(x)的極值點(diǎn)(等價(jià)于求f'(k)=0的點(diǎn))屬于特殊情況.
而拉格朗日中值定理的情況是,羅爾定理的一般情況.( a,f(a) )和點(diǎn)( b,f(b) )的連線已經(jīng)跟x軸產(chǎn)生夾角了,所以構(gòu)造函數(shù)的時(shí)候就要把它的坐標(biāo)軸轉(zhuǎn)變一下.然后還是跟羅爾定理一樣,求出函數(shù)H(x)的極值點(diǎn)即可.
九、拉格朗日中值定理怎么證明?
把拉格朗日定理移項(xiàng),得f(x)-[f(b)-f(a)]/(b-a)*(x-a)=0,令u(x)等于等號(hào)左邊的函數(shù)。
于是有u(a)=u(b)=f(a),這就滿足了羅爾定理。
羅爾定理是:在[a,b]上滿足u(a)=u(b)時(shí),一定存在m屬于(a,b)使u(x)的導(dǎo)數(shù)等于0。
這些條件現(xiàn)在都滿足了,而且對(duì)u(x)求導(dǎo)后,經(jīng)過簡(jiǎn)單移項(xiàng),立刻就可得到拉格朗日中值定理的式子。羅爾定理是拉格朗日中值定理在f(a)=f(b)時(shí)的特殊情況。
十、拉格朗日定理著名?
拉格朗日定理存在于多個(gè)學(xué)科領(lǐng)域中,分別為:流體力學(xué)中的拉格朗日定理;微積分中的拉格朗日定理;數(shù)論中的拉格朗日定理;群論中的拉格朗日定理。
正壓理想流體在質(zhì)量力有勢(shì)的情況下,如果初始時(shí)刻某部分流體內(nèi)無渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為無渦。以某一起始時(shí)刻每個(gè)質(zhì)點(diǎn)的坐標(biāo)位置(a、b、c),作為該質(zhì)點(diǎn)的標(biāo)志。 如果在一個(gè)正整數(shù)的因數(shù)分解式中,沒有一個(gè)數(shù)有形式如4k+3的質(zhì)數(shù)次方,該正整數(shù)可以表示成兩個(gè)平方數(shù)之和。