1. 拉格朗日的變形
拉格朗日出生在意大利的都靈。由于是長(zhǎng)子,父親一心想讓他學(xué)習(xí)法律,然而,拉格朗日對(duì)法律毫無興趣,偏偏喜愛上文學(xué)。
直到16歲時(shí),拉格朗日仍十分偏愛文學(xué),對(duì)數(shù)學(xué)尚未產(chǎn)生興趣。16歲那年,他偶然讀到一篇介紹牛頓微積分的文章《論分析方法的優(yōu)點(diǎn)》,使他對(duì)牛頓產(chǎn)生了無限崇拜和敬仰之情,于是,他下決心要成為牛頓式的數(shù)學(xué)家。
在進(jìn)入都靈皇家炮兵學(xué)院學(xué)習(xí)后,拉格朗日開始有計(jì)劃地自學(xué)數(shù)學(xué)。由于勤奮刻苦,他的進(jìn)步很快,尚未畢業(yè)就擔(dān)任了該校的數(shù)學(xué)教學(xué)工作。20歲時(shí)就被正式聘任為該校的數(shù)學(xué)副教授。從這一年起,拉格朗日開始研究“極大和極小”的問題。他采用的是純分析的方法。1758年8月,他把自己的研究方法寫信告訴了歐拉,歐拉對(duì)此給予了極高的評(píng)價(jià)。從此,兩位大師開始頻繁通信,就在這一來一往中,誕生了數(shù)學(xué)的一個(gè)新的分支——變分法。
1759年,在歐拉的推薦下,拉格朗日被提名為柏林科學(xué)院的通訊院士。接著,他又當(dāng)選為該院的外國(guó)院士。
1762年,法國(guó)科學(xué)院懸賞征解有關(guān)月球何以自轉(zhuǎn),以及自轉(zhuǎn)時(shí)總是以同一面對(duì)著地球的難題。拉格朗日寫出一篇出色的論文,成功地解決了這一問題,并獲得了科學(xué)院的大獎(jiǎng)。拉格朗日的名字因此傳遍了整個(gè)歐洲,引起世人的矚目。兩年之后,法國(guó)科學(xué)院又提出了木星的4個(gè)衛(wèi)星和太陽之間的攝動(dòng)問題的所謂“六體問題”。面對(duì)這一難題,拉格朗日毫不畏懼,經(jīng)過數(shù)個(gè)不眠之夜,他終于用近似解法找到了答案,從而再度獲獎(jiǎng)。這次獲獎(jiǎng),使他贏得了世界性的聲譽(yù)。
1766年,拉格朗日接替歐拉擔(dān)任柏林科學(xué)院物理數(shù)學(xué)所所長(zhǎng)。在擔(dān)任所長(zhǎng)的20年中,拉格朗日發(fā)表了許多論文,并多次獲得法國(guó)科學(xué)院的大獎(jiǎng):1722年,其論文《論三體問題》獲獎(jiǎng);1773年,其論文《論月球的長(zhǎng)期方程》再次獲獎(jiǎng);1779年,拉格朗日又因論文《由行星活動(dòng)的試驗(yàn)來研究彗星的攝動(dòng)理論》而獲得雙倍獎(jiǎng)金。
在柏林科學(xué)院工作期間,拉格朗日對(duì)代數(shù)、數(shù)論、微分方程、變分法和力學(xué)等方面進(jìn)行了廣泛而深入的研究。他最有價(jià)值的貢獻(xiàn)之一是在方程論方面。他的“用代數(shù)運(yùn)算解一般n次方程(n4)是不能的”結(jié)論,可以說是伽羅華建立群論的基礎(chǔ)。
2. 拉格朗日變形條件
判斷是極大值還是極小值點(diǎn),一個(gè)初步的方法是依靠經(jīng)驗(yàn)和對(duì)問題的認(rèn)識(shí)。當(dāng)不能作出有效判斷時(shí),可以求取函數(shù)的二階導(dǎo)數(shù)進(jìn)行判斷,其實(shí)一個(gè)簡(jiǎn)單的方法是比較該極值點(diǎn)的函數(shù)值與相鄰點(diǎn)的函數(shù)來作出判斷。
至于存在不能化為無條件極值的問題,一般是先不管約束條件建立求解極值點(diǎn)的方程,然后再限制在約束條件下求出最后解答,具體的過程,建議參看變分原理等數(shù)學(xué)或力學(xué)書籍,如《計(jì)算動(dòng)力學(xué)》中就有提到,不過這本書不是純粹的數(shù)學(xué)推演。
3. 拉格朗日變數(shù)是什么
在數(shù)學(xué)最優(yōu)化問題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的多元函數(shù)的極值的方法。這種方法將一個(gè)有n 個(gè)變量與k 個(gè)約束條件的最優(yōu)化問題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)矢量的系數(shù)。
引入新變量拉格朗日乘數(shù),即可求解拉格朗日方程
此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。
4. 拉格朗日變形體
羅爾中值定理能推出拉格朗日中值定理和柯西中值定理,反過來拉格朗日中值定理和柯西中值定理也可以推出羅爾中值定理。
泰勒中值定理是由柯西中值定理推出來的。泰勒中值定理在一階導(dǎo)數(shù)情形就是拉格朗日中值定理。
羅比達(dá)法則是柯西中值定理在求極限時(shí)應(yīng)用。
5. 拉格朗日與變分法
拉格朗日法是描述流體運(yùn)動(dòng)的兩種方法之一,又稱隨體法,跟蹤法。
是研究流體各個(gè)質(zhì)點(diǎn)的運(yùn)動(dòng)參數(shù)(位置坐標(biāo)、速度、加速度等)隨時(shí)間的變化規(guī)律。綜合所有流體質(zhì)點(diǎn)運(yùn)動(dòng)參數(shù)的變化,便得到了整個(gè)流體的運(yùn)動(dòng)規(guī)律。
在研究波動(dòng)問題時(shí),常用拉格朗日法
6. 拉格朗日中值定理的變形
拉格朗日中值定理有一個(gè)變形,即所謂的有限增量公式:f(x0+Δx)-f(x0)=f'(x0+θΔx)Δx,0<θ<1。其中的
有一個(gè)很重要的性質(zhì):
若
在
點(diǎn)連續(xù),且
,則
證明 由于f''(x)在
點(diǎn)連續(xù),所以有
(1)
;
(2)
。
將(1)和(2)同時(shí)代入有限增量公式,可得
,,利用f"(x)在x0點(diǎn)處的連續(xù)性及f"(x0)≠0,在等式兩邊同取極限(令
),即可得結(jié)論。
7. 歐拉拉格朗日變分
其實(shí)他們的區(qū)別僅僅是顏色版本上的不同而已,
前者采用的是白色的面板,后者采用的是黑色的面板,他們的內(nèi)置配置都是一模樣的,他們都承認(rèn)是高通驍龍870處理器,都支持5G雙模全網(wǎng)通功能。都累死了,4500毫安電池,支持65w的快速充電,都支持立體聲雙揚(yáng)聲器。
8. 拉格朗日變形所需技能點(diǎn)
[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得
顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
9. 拉格朗日公式變形
拉格朗日乘數(shù)原理(即拉格朗日乘數(shù)法)由用來解決有約束極值的一種方法。
有約束極值:舉例說明,函數(shù) z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問題就叫做有約束極值問題。
上述問題可以通過消元來解決,例如消去x,則變成
z=(y-1)^2+y^2
則容易求解。
但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時(shí)消元將會(huì)很繁,則須用拉格朗日乘數(shù)法,過程如下:
令
f=x^2+y^2+k*((y-1)^2+y^2)
令
f對(duì)x的偏導(dǎo)=0
f對(duì)y的偏導(dǎo)=0
f對(duì)k的偏導(dǎo)=0
解上述三個(gè)方程,即可得到可讓z取到極小值的x,y值。
拉格朗日乘數(shù)原理在工程中有廣泛的應(yīng)用,以上只簡(jiǎn)單地舉一例,更復(fù)雜的情況(多元函數(shù),多限制條件)可參閱高等數(shù)學(xué)教材。
10. 拉格朗日變形求極限
這題不能用拉格朗日中值定理,因?yàn)椴鸪蒣cos(sinx)-cosx]/(sinx-x)*(sinx-x)/(1-cosx)sinx之後,分別計(jì)算每項(xiàng)極限.第一項(xiàng)用拉格朗日中值定理得極限是0,而第二項(xiàng)用等價(jià)無窮小替換得極限是∞,所以不能利用積的極限等於極限的積來拆開.這題最簡(jiǎn)單就是分子用和差化積公式整理,然後等價(jià)替換分子=-2sin[(sinx+x)/2]*sin[(sinx-x)/2]~(x+sinx)(x-sinx)/2~x^4/6分母~x^4/2因此原式=1/3