1. 拉格朗日輔助函數(shù)的應(yīng)用
一.線性插值(一次插值) 已知函數(shù)f(x)在區(qū)間[xk ,xk+1 ]的端點上的函數(shù)值yk =f(xk ), yk+1 = f(xk+1 ),求一個一次函數(shù)y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其幾何意義是已知平面上兩點(xk ,yk ),(xk+1 ,yk+1 ),求一條直線過該已知兩點。
首先,插值法是:利用函數(shù)f (x)在某區(qū)間中插入若干點的函數(shù)值,作出適當(dāng)?shù)奶囟ê瘮?shù),在這些點上取已知值,在區(qū)間的其他點上用這特定函數(shù)的值作為函數(shù)f (x)的近似值,這種方法稱為插值法.
其目的便就是估算出其他點上的函數(shù)值.
而拉格朗日插值法就是一種插值法.
2. 拉格朗日函數(shù)作用
當(dāng)求某個函數(shù)的最值,且改函數(shù)中的變量有約束時則使用拉格朗日函數(shù)
3. 拉格朗日函數(shù)的輔助函數(shù)
考研的時候數(shù)學(xué)考的是全國統(tǒng)考的數(shù)學(xué)一二三,那么,你完全不需要了解多元函數(shù)條件極值的判別,只需要應(yīng)用朗格朗日乘數(shù)法或者代入法解決問題就可以了。在考試中,涉及條件極值的題目都是求最值的應(yīng)用題,我們使用拉格朗日乘數(shù)法找到邊界駐點,再利用二元函數(shù)求極值的方法找到區(qū)域內(nèi)駐點,然后直接比較這些點處的函數(shù)值就可以了。
4. 拉格朗日定理輔助函數(shù)技巧
拉格朗日中值定理是微積分中的重要定理之一,大多數(shù)是利用羅爾中值定理構(gòu)建輔助函數(shù)來證明的。
擴(kuò)展資料
拉格朗日中值定理又稱拉氏定理,是微分學(xué)中的基本定理之一,它反映了可導(dǎo)函數(shù)在閉區(qū)間上的.整體的平均變化率與區(qū)間內(nèi)某點的局部變化率的關(guān)系。拉格朗日中值定理是羅爾中值定理的推廣,同時也是柯西中值定理的特殊情形,是泰勒公式的弱形式(一階展開)。
法國數(shù)學(xué)家拉格朗日于1797年在其著作《解析函數(shù)論》的第六章提出了該定理,并進(jìn)行了初步證明,因此人們將該定理命名為拉格朗日中值定理。
5. 構(gòu)造拉格朗日輔助函數(shù)
拉格朗日乘數(shù)法是多元微分學(xué)中用來求函數(shù)z=f(x,y)在滿足g(x,y)=0條件下的極值問題的方法:通過設(shè)F(x,y)=f(x,y)+λg(x,y),其中λ稱為拉格朗日乘數(shù),并求F(x,y)的極值點求得條件極值的方法
6. 拉格朗日怎么找輔助函數(shù)
設(shè)給定二元函數(shù)z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點,先做拉格朗日函數(shù),其中λ為參數(shù)。求L(x,y)對x和y的一階偏導(dǎo)數(shù),令它們等于零,并與附加條件聯(lián)立,即
L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,
L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,
φ(x,y)=0
由上述方程組解出x,y及λ,如此求得的(x,y),就是函數(shù)z=?(x,y)在附加條件φ(x,y)=0下的可能極值點。
7. 拉格朗日輔助函數(shù)的構(gòu)造方法
拉格朗日法是描述流體運動的兩種方法之一,又稱隨體法,跟蹤法。
是研究流體各個質(zhì)點的運動參數(shù)(位置坐標(biāo)、速度、加速度等)隨時間的變化規(guī)律。綜合所有流體質(zhì)點運動參數(shù)的變化,便得到了整個流體的運動規(guī)律。
在研究波動問題時,常用拉格朗日法
8. 證明拉格朗日定理的輔助函數(shù)
拉格朗日定理
數(shù)理科學(xué)定理
拉格朗日定理存在于多個學(xué)科領(lǐng)域中,分別為:流體力學(xué)中的拉格朗日定理;微積分中的拉格朗日定理;數(shù)論中的拉格朗日定理;群論中的拉格朗日定理。
正壓理想流體在質(zhì)量力有勢的情況下,如果初始時刻某部分流體內(nèi)無渦,則在此之前或以后的任何時刻中這部分流體皆為無渦。以某一起始時刻每個質(zhì)點的坐標(biāo)位置(a、b、c),作為該質(zhì)點的標(biāo)志。 如果在一個正整數(shù)的因數(shù)分解式中,沒有一個數(shù)有形式如4k+3的質(zhì)數(shù)次方,該正整數(shù)可以表示成兩個平方數(shù)之和。
9. 拉格朗日中值定理中的輔助函數(shù)怎么來的
隱函數(shù)中的dx與dy是對方程兩邊同時求導(dǎo)后得到的